Reflective Tomography Lidar Image Reconstruction for Long Distance Non-Cooperative Target

Author:

Guo RuiORCID,Jiang Zheyi,Jin Zhihan,Zhang Zhao,Zhang XinyuanORCID,Guo Liang,Hu YihuaORCID

Abstract

In the long-distance space target detection, the technique of laser reflection tomography (LRT) shows great power and attracts more attention for further study and real use. However, space targets are often non-cooperative, and normally a 360° complete view of reflection projections cannot be obtained. Therefore, this article firstly introduces an improved LRT system design with more advanced laser equipment for long-distance non-cooperative detection to ensure the high quality of the lidar beam and the lidar projection data. Then, the LRT image reconstruction is proposed and focused on the laser image reconstruction method utilizing the total variation (TV) minimization approach based on the sparse algebraic reconstruction technique (ART) model, in order to reconstruct the laser image in a sparse or incomplete view of projections. At last, comparative experiments with the system are performed to validate the advantages of this method with the LRT system. In both near and far field experiments, the effectiveness and superiority of the proposed method are verified for different types of projection data through comparison to typical methods.

Funder

Shanghai Aerospace Science and Technology Innovation Foundation

the Research Plan Project of the National University of Defense Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference29 articles.

1. Reflective tomography: images from range-resolved laser radar measurements

2. Techniques on long-range and high-resolution imaging lidar;Jin;Laser Optoelectron. Prog.,2013

3. Modified Radon-Fourier transform for reflective tomography laser radar imaging;Jin;Proceedings of the SPIE International Symposium on Photoelectronic Detection and Imaging,2011

4. Imaging resolution analysis in limited-view Laser Radar reflective tomography

5. Image quality analysis and improvement of Ladar reflective tomography for space object recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3