Assessing the Potential of Backpack-Mounted Mobile Laser Scanning Systems for Tree Phenotyping

Author:

Hartley Robin J. L.ORCID,Jayathunga SadeepaORCID,Massam Peter D.,De Silva Dilshan,Estarija Honey Jane,Davidson Sam J.ORCID,Wuraola AdedamolaORCID,Pearse Grant D.ORCID

Abstract

Phenotyping has been a reality for aiding the selection of optimal crops for specific environments for decades in various horticultural industries. However, until recently, phenotyping was less accessible to tree breeders due to the size of the crop, the length of the rotation and the difficulty in acquiring detailed measurements. With the advent of affordable and non-destructive technologies, such as mobile laser scanners (MLS), phenotyping of mature forests is now becoming practical. Despite the potential of MLS technology, few studies included detailed assessments of its accuracy in mature plantations. In this study, we assessed a novel, high-density MLS operated below canopy for its ability to derive phenotypic measurements from mature Pinus radiata. MLS data were co-registered with above-canopy UAV laser scanner (ULS) data and imported to a pipeline that segments individual trees from the point cloud before extracting tree-level metrics. The metrics studied include tree height, diameter at breast height (DBH), stem volume and whorl characteristics. MLS-derived tree metrics were compared to field measurements and metrics derived from ULS alone. Our pipeline was able to segment individual trees with a success rate of 90.3%. We also observed strong agreement between field measurements and MLS-derived DBH (R2 = 0.99, RMSE = 5.4%) and stem volume (R2 = 0.99, RMSE = 10.16%). Additionally, we proposed a new variable height method for deriving DBH to avoid swelling, with an overall accuracy of 52% for identifying the correct method for where to take the diameter measurement. A key finding of this study was that MLS data acquired from below the canopy was able to derive canopy heights with a level of accuracy comparable to a high-end ULS scanner (R2 = 0.94, RMSE = 3.02%), negating the need for capturing above-canopy data to obtain accurate canopy height models. Overall, the findings of this study demonstrate that even in mature forests, MLS technology holds strong potential for advancing forest phenotyping and tree measurement.

Funder

Ministry of Business, Innovation and Employment

Forest Growers Levy Trust

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3