Sensitivity Analysis of Runoff and Wind with Respect to Yellow River Estuary Salinity Plume Based on FVCOM

Author:

Qin Huawei12,Shi Hongyuan1ORCID,Gai Yunyun3,Qiao Shouwen14,Li Qingjie5

Affiliation:

1. The Center for Ports and Maritime Safety (CPMS), Dalian Maritime University, Dalian 116026, China

2. Shandong Marine Resource and Environment Research Institute, Yantai 265503, China

3. The Department of Food and Biochemical Engineering, Yantai Vocational Collage, Yantai 264025, China

4. College of Oceanography and Atmosphere, Ocean University of China, Qingdao 266100, China

5. Marine Environmental Monitoring Central Station, State Oceanic Administration, Yantai 264000, China

Abstract

In 2020, Yellow River runoff was more than twice as much as past years, and the proportion of strong winds was also higher than that in past years, which will inevitably lead to a change in salinity plume distribution in the Yellow River Estuary and Laizhou Bay. Based on FVCOM numerical modelling, this paper presents the spatial salinity distribution and dispersion of the Yellow River Estuary and Laizhou Bay during the wet and dry seasons in 2020. We used data from six tidal and current stations and two salinity stations to verify the model, and the results showed that the model can simulate the local hydrodynamic and salinity distribution well. The influence of river discharge and wind speed on salinity diffusion was then investigated. The simulation results showed that under the action of residual currents, fresh water from the Yellow River spread to Laizhou Bay, and the low salinity area of Laizhou Bay was mainly distributed in the northwest. The envelope area of 27 psu isohaline can account for about one-quarter of Laizhou Bay in the wet season, while the low-salinity area was only concentrated near the estuary of Yellow River in the dry season. River discharge mainly affects the diffusion area and depth of fresh water, and wind can change the diffusion structure and direction. In the wet season, with the increase in wind speed, the surface area of the plume decreased gradually, and the direction of the fresh water plume changed counterclockwise from south to north. During the dry season, the plume spread to the northwest along the nearshore. The increase in wind speed in the early stage increased the surface plume area, and the plume area decreased above a wind speed of 10 m/s due to the change in the turbulence structure. The model developed and the results from this study provide valuable information for establishing robust water resource regulations for the Yellow River. This is particularly important to ensure that the areas with low salinity in the Yellow River Estuary will not decrease and affect the reproduction of fish species.

Funder

Major Research Grant

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3