Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation

Author:

Che Beibei,Shao ChaofengORCID,Lu Zhirui,Qian Binghong,Chen Sihan

Abstract

Through energy transition, China can help curb the global climate challenge and achieve carbon neutrality. However, the development of energy transition is potentially constrained by minerals. Previous studies on energy minerals have been limited to power generation technologies (e.g., wind and solar) and have mostly focused on rare metals. In this study, 18 minerals were selected for investigation based on the energy transition scenario in China. A dynamic stock model was used to calculate the installed capacity and phase-out of infrastructure. Through scenario analysis, changes in the demand for minerals from China’s energy transition and the risks of these minerals were assessed. Uncertainties in mineral intensity and lifetime assumptions were also addressed through statistical estimation and sensitivity analysis. The results indicate that wind power and photovoltaics will dominate the power generation sector in the future. Further, some minerals (Co, Cr, Cu, In, Li, Ni, Te) will face risk (especially Co and In), which may limit the development of electric vehicles and photovoltaics. Extending lifetime and reducing material intensity can reduce material demands but cannot fully mitigate material supply risks. Therefore, resource security strategies should be developed in advance to secure the supply of mineral resources in the energy transition process.

Funder

Department of Science and Technology of Shandong Province

Zaozhuang Science and Technology Bureau

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference69 articles.

1. Paris Agreement climate proposals need a boost to keep warming well below 2 degrees C;Rogelj;Nature,2016

2. Johnston, B. (2021, December 20). Arsenic and the 2030 Agenda for Sustainable Development. Available online: https://www.semanticscholar.org/paper/Arsenic-and-the-2030-Agenda-for-Sustainable-Johnston/ce835c47d4eb12b1764b61a83d0b16182e933c3b.

3. IEA (2021). World Energy Outlook 2021, IEA.

4. IRENA (2022). World Energy Transitions Outlook 1.5 °C Pathway, IRENA.

5. IEA (2021). The Role of Critical Minerals in Clean Energy Transitions, IEA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3