Multi-Scenario Simulations of Land Use and Habitat Quality Based on a PLUS-InVEST Model: A Case Study of Baoding, China

Author:

Hu Nan,Xu Dong,Zou Ning,Fan Shuxin,Wang Peiyan,Li Yunyuan

Abstract

Habitat quality and ecosystem service value (ESV) are important foundations for sustainable development. Baoding, as the strategic hinterland of Beijing–Tianjin–Hebei, is of great significance to regional ecological conservation and sustainable urban development. Based on land-use data from 2000 to 2020, the land-use scenarios of natural development (ND), water protection (WP), forest rehabilitation (FR), and cultivated land protection (CP) in 2030 were predicted by the PLUS model and adopt the InVEST model and equivalent ESV table to assess ecological sustainability. The results show that: (1) From 2000 to 2020, the construction land in Baoding has increased by 812 km2, and the cultivated land and forest land decreased by 708 km2 and 154 km2. Habitat quality is obviously deteriorating in 4.66% of the city. (2) Under different scenarios, the order of habitat quality is CP > FR > WP > ND. The habitat quality under each scenario is dominated by medium habitat quality. (3) Under different scenarios, the order of ESV is FR > CP> WP > ND. The fluctuation of forest land and cultivated land scale is affecting the ESV. (4) CP and FR will form a land-use pattern that has “high ecological quality and value”, which better balances the economic development and ecological protection of Baoding. This research study will provide a reference for the effective allocation of land resources and will guide the formulation of urban land space planning policy in Baoding.

Funder

Beijing Municipal Science and Technology Planning Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3