Effects of an Episodic Storm-Induced Flooding Event on the Biogeochemistry of a Shallow, Highly Turbid, Semi-Enclosed Embayment (Laizhou Bay, Bohai Sea)

Author:

Meng LingORCID,Xing QianguoORCID,Gao XueluORCID,Ji Diansheng,Qu Fanzhu,Wang Xiaoqing,Ji Ling

Abstract

Episodic storm-induced flooding is becoming more frequent with a warming climate, which may alter the biogeochemical properties and conditions of estuaries. However, the effects of such extreme events on semi-enclosed bay ecosystems have not been fully investigated because of the difficulty in collecting in situ samples. To address this issue, a comparative study was carried out to understand the biogeochemical changes in Laizhou Bay, a shallow, highly turbid, semi-enclosed bay, by coupling satellite data and surface water samplings collected during an episodic flooding event (August 2018) and during a non-flooding period (August 2017). The results showed that the 2018 Shouguang flood delivered large amounts of suspended solids, phosphorus, and organic matter-enriched terrigenous materials into Laizhou Bay and enhanced the offshore expansion of the low-salinity seawater plume and associated nutrient fronts. Water total suspended solid (TSS) particle and chlorophyll a (Chl-a) concentrations increased by 23.79 g/m3 and 0.63 mg/m3, respectively, on average in the freshwater mixing water plume around the Mi River. Episodic flooding is a crucial driver which temporally dominates the spatial patterns of water biogeochemistry. These results are essential to anticipate the ecosystem response of estuarine regions to the high episodic freshwater flow associated with the increasing storms.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3