The Ionization of Polymeric Materials Accelerates Protein Deposition on Hydrogel Contact Lens Material

Author:

Ahn Jihye1ORCID,Choi Moonsung12ORCID

Affiliation:

1. Department of Optometry, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

2. Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

Abstract

Contact lens materials include polymers that are ionized in the ocular pH condition and are susceptible to protein deposition due to their surface characteristics. Herein, we investigated the effect of the electrostatic state of the contact lens material and protein on protein deposition level using hen egg white lysozyme (HEWL) and bovine serum albumin (BSA) as model proteins and etafilcon A and hilafilcon B as model contact lens materials. Only HEWL deposition on etafilcon A showed a statistically significant pH-dependency (p < 0.05); protein deposition increased with pH. HEWL showed a positive zeta potential at acidic pH, while BSA showed a negative zeta potential at basic pH. Only etafilcon A showed a statistically significant pH-dependent point of zero charge (PZC) (p < 0.05), implying that its surface charge became more negative under basic conditions. This pH-dependency of etafilcon A is attributed to the pH-responsive degree of ionization of its constituent methacrylic acid (MAA). The presence of MAA and its degree of ionization could accelerate protein deposition; more HEWL deposited as pH increased despite the weak positive surface charge of HEWL. The highly negatively charged etafilcon A surface attracted HEWL, even overwhelming weak positive charge of HEWL, increasing the deposition with pH.

Funder

National Research Foundation of Korea

Basic Science Research Program through the National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3