Experimental Research and Numerical Simulation of Laser Welding of 303Cu/440C-Nb Stainless-Steel Thin-Walled Natural-Gas Injector for Vehicles

Author:

Zhou Lisen1,Li Dongya2,Xu Chonghai1ORCID,Zheng Zhaoxing3,Liu Yu2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. School of Mechanical Engineering, Jiangnang University, Wuxi 214122, China

3. Wuxi Longsheng Technology Co., Ltd., Wuxi 214028, China

Abstract

This paper presents the results of research on laser lap welding technology of heterogeneous materials and a laser post-heat treatment method to enhance welding performance. The purpose of this study is to reveal the welding principle of austenitic/martensitic dissimilar stainless-steel materials (3030Cu/440C-Nb) and to further obtain welded joints with good mechanical and sealing properties. A natural-gas injector valve is taken as the study case where its valve pipe (303Cu) and valve seat (440C-Nb) are welded. Experiments and numerical simulations were conducted where the welded joints’ temperature and stress fields, microstructure, element distribution, and microhardness were studied. The results showed that the residual equivalent stresses and uneven fusion zone tend to concentrate at the joint of two materials within the welded joint. The hardness of the 303Cu side (181.8 HV) is less than the 440C-Nb side (266 HV) in the center of the welded joint. The laser post-heat treatment can reduce the residual equivalent stress in the welded joint and improve the mechanical and sealing properties. The results of the press-off force test and the helium leakage test showed that the press-off force increased from 9640 N to 10,046 N and the helium leakage rate decreased from 3.34 × 10−4 to 3.96 × 10−6.

Funder

Jiangsu Province, China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3