Affiliation:
1. Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8565, Japan
Abstract
High-quality, uniaxially oriented, and flexible PbZr0.52Ti0.48O3 (PZT) films were fabricated on flexible RbLaNb2O7/BaTiO3 (RLNO/BTO)-coated polyimide (PI) substrates. All layers were fabricated by a photo-assisted chemical solution deposition (PCSD) process using KrF laser irradiation for photocrystallization of the printed precursors. The Dion–Jacobson perovskite RLNO thin films on flexible PI sheets were employed as seed layers for the uniaxially oriented growth of PZT films. To obtain the uniaxially oriented RLNO seed layer, a BTO nanoparticle-dispersion interlayer was fabricated to avoid PI substrate surface damage under excess photothermal heating, and the RLNO has been orientedly grown only at around 40 mJ·cm−2 at 300 °C. The prepared RLNO seed layer on the BTO/PI substrate showed very high (010)-oriented growth with a very high Lotgering factor (F(010) = 1.0). By using the flexible (010)-oriented RLNO film on BTO/PI, PZT film crystal growth was possible via KrF laser irradiation of a sol–gel-derived precursor film at 50 mJ·cm−2 at 300 °C. The obtained PZT film showed highly (001)-oriented growth on the flexible plastic substrates with F(001) = 0.92 without any micro-cracks. The RLNO was only uniaxial-oriented grown at the top part of the RLNO amorphous precursor layer. The oriented grown and amorphous phases of RLNO would have two important roles for this multilayered film formation: (1) triggering orientation growth of the PZT film at the top and (2) the stress relaxation of the underneath BTO layer to suppress the micro-crack formation. This is the first time that PZT films have been crystallized directly on flexible substrates. The combined processes of photocrystallization and chemical solution deposition are a cost-effective and highly on-demand process for the fabrication of flexible devices.
Funder
Japan Society for the Promotion of Science
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献