Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process to Assess Flood Hazard on the Al-Shamal Train Pathway in Al-Qurayyat Region, Kingdom of Saudi Arabia

Author:

Abdelkarim AshrafORCID,Al-Alola Seham S.,Alogayell Haya M.,Mohamed Soha A.ORCID,Alkadi Ibtesam I.,Ismail Ismail Y.

Abstract

Understanding the dynamics of floods in dry environments and predicting an accurate flood hazard map considering multiple standards and conflicting objectives is of great political and planning importance in the Kingdom of Saudi Arabia’s vision for the year 2030, in order to reduce losses in lives, property, and infrastructure. The objectives of this study are (1) to develop a flood vulnerability map identifying flood-prone areas along the Al-Shamal train railway pathway; (2) to forecast the vulnerability of urban areas, agricultural land, and infrastructure to possible future floods hazard; and (3) to introduce strategic solutions and recommendations to mitigate and protect such areas from the negative impacts of floods. In order to achieve these objectives, multicriteria decision analysis based on geographic information systems (GIS-MCDA) is used to build a flood hazard map of the study area. The analytic hierarchy process (AHP) is applied to extract the weights of eight criteria which affect the areas which are prone to flooding hazards, including flow accumulation, distance from the wadi network, slope, rainfall density, drainage density, and rainfall speed. Furthermore, the receiver operating characteristic (ROC Curve) method is used to validate the presented flood hazard model. The results of the study reveal that there are five degrees of flooding hazard along the Al-Shamal train path, ranging from very high to very low. The high and very high hazard zones comprise 19.2 km along the path, which constitutes about 26.45% of the total path length, and are concentrated at the intersections of the Al-Shamal train pathway with the Bayer and Al-Makhrouk wadis. Moderate, low, and very low flood severity areas constitute nearly 53.39 km, representing 73.55% of the total length (72.59 km) of the track. These areas are concentrated at the intersection of the Al-Shamal train track with the Haseidah Al-Gharbiyeh and Hsaidah Umm Al-Nakhleh wadis. Urban and agricultural areas that are vulnerable to high and very high flooding hazards are shown to have areas of 29.23 km2 (22.12%) and 59.87 km2 (46.39%), respectively.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3