Hydraulic Function Analysis of Conifer Xylem Based on a Model Incorporating Tracheids, Bordered Pits, and Cross-Field Pits

Author:

Qu Wen,Yang Chunmei,Zhang Jiawei,Ma Yan,Tian Xinchi,Zhao Shuai,Yu Wenji

Abstract

Wood has a highly complex and anisotropic structure. Its xylem characteristics are key in determining the hydraulic properties of plants to transport water efficiently and safely, as well as the permeability in the process of wood impregnation modification. Previous studies on the relationship between the xylem structure and hydraulic conductivity of conifer have mainly focused on tracheids and bordered pits, with only a few focusing on the conduction model of cross-field pits which connect tracheids and rays. This study takes the xylem structure of conifer as an example, drawing an analogy between water flow under tension and electric current, and extends the model to the tissue scale, including cross-field pits by establishing isometric scaling. The structure parameters were collected by scanning electron microscopy and transmission electron microscopy. The improved model can quantify the important hydraulic functional characteristics of xylem only by measuring the more easily obtained tracheid section size. Then, this model was applied to quantify the relationship between the xylem anatomical structure and hydraulic properties in the pine (Pinus sylvestris L. var. mongholica Litv.) and the spruce (Picea koraiensis Nakai), and also to evaluate the effects of the number and size of cross-field pits on xylem conduction. The results showed that the growth ring conduction value of the pine was more than twice that of the spruce for the two tree species with similar growth widths in this study. The tracheid wall resistance of the pine reflected the result of the interaction of the size and number of cross-field pits, in comparison, the wall resistance of the spruce was more sensitive to the number of cross-field pits. Finally, the calculation output of the new model was cross-validated with the literature, which verified the accuracy and effectiveness of the model. This study provides an effective and complete solution for xylem conductivity measurement and the study of wood ecophysiological diversity and processing.

Funder

Major special research and development projects in Guangdong Province

Natural Science Foundation of Heilongjiang Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3