IKN-CF: An Approach to Identify Key Nodes in Inter-Domain Routing Systems Based on Cascading Failures

Author:

Zhao WendianORCID,Wang YongjieORCID,Xiong Xinli,Zhao Jiazhen

Abstract

Inter-domain routing systems is an important complex network in the Internet. Research on the vulnerability of inter-domain routing network nodes is of great support to the stable operation of the Internet. For the problem of node vulnerability, we proposed a method for identifying key nodes in inter-domain routing systems based on cascading failures (IKN-CF). Firstly, we analyzed the topology of inter-domain routing network and proposed an optimal valid path discovery algorithm considering business relationships. Then, the reason and propagation mechanism of cascading failure in the inter-domain routing network were analyzed, and we proposed two cascading indicators, which can approximate the impact of node failure on the network. After that, we established a key node identification model based on improved entropy weight TOPSIS (EWT), and the key node sequence in the network can be obtained through EWT calculation. We compared the existing three methods in two real inter-domain routing networks. The results indicate that the ranking results of IKN-CF are high accuracy, strong stability, and wide applicability. The accuracy of the top 100 nodes of the ranking result can reach 83.6%, which is at least 12.8% higher than the average accuracy of the existing three methods.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KNI-DRL: Key Nodes Identification Method Based on Deep Reinforcement Learning in Inter-domain Routing Networks;2024 9th International Conference on Computer and Communication Systems (ICCCS);2024-04-19

2. Recognizing Critical Stations in Urban Rail Transit Networks Based on the PCA‐TPE Method: Shanghai Metro as an Example;Journal of Advanced Transportation;2024-01

3. Reinforcement Learning based Attack Timing Optimization in Inter-domain Networks;2023 9th International Conference on Big Data Computing and Communications (BigCom);2023-08-04

4. NIE-GAT: node importance evaluation method for inter-domain routing network based on graph attention network;Journal of Computational Science;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3