Influence of Vegetation Coverage on Hydraulic Characteristics of Overland Flow

Author:

Cai ZekangORCID,Wang Jian,Yang Yushuo,Zhang RanORCID

Abstract

Soil erosion is a major problem in the Loess Plateau (China); however, it can be alleviated through vegetation restoration. In this study, the overland flow on a slope during soil erosion was experimentally simulated using artificial grass as vegetation cover. Nine degrees of vegetation coverage and seven flow rates were tested in combinations along a 12° slope gradient. As the coverage degree increased, the water depth of the overland flow increased, but the flow velocity decreased. The resistance coefficient increased with increasing degree of coverage, especially after a certain point. The resistance coefficient and the Reynolds number had an inverse relationship. When the Reynolds number was relatively small, the resistance coefficient decreased faster; however, when it exceeded 600, the resistance coefficient decreased at a slower rate. A critical degree of vegetation cover was observed in the relationship between the resistance coefficient and submergence degree. When the degree of coverage was greater than 66.42%, the resistance coefficient first decreased and then increased with a higher submergence degree. Finally, the formula for the resistance coefficient under vegetation coverage was derived. This formula has a relatively high accuracy and can serve as a reference for predicting soil erosion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3