Risk Assessment of Power Supply Security Considering Optimal Load Shedding in Extreme Precipitation Scenarios

Author:

Zhou Gang1,Shi Jianxun1,Chen Bingjing2,Qi Zhongyi1,Wang Licheng3ORCID

Affiliation:

1. Jiaxing Power Supply Company of State Grid, Jiaxing 314000, China

2. Jiaxing Heng-Chuang Electric Power Group Limited Bochuang Materials Branch, Jiaxing 314000, China

3. School of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

Extreme rainfall may induce flooding failures of electricity facilities, which poses power systems in a risk of power supply interruption. To quantitatively estimate the risk of power system operation under extreme rainfall, a multi-scenario stochastic risk assessment method was proposed. First, a scenario generation scheme considering waterlogged faults of power facilities was constructed based on the storm water management model (SWMM) and the extreme learning machine method. These scenarios were merged with several typical scenario sets for further processing. The outage of power facilities will induce power flow transfer which may consequently lead to transmission lines’ thermal limit violation. Semi-invariant and Gram–Charlier level expansion methods were adopted to analytically depict the probability density function and cumulative probability function of each line’s power flow. The optimal solution was performed by a particle swarm algorithm to obtain proper load curtailment at each bus, and consequently, the violation probability of line thermal violations can be controlled within an allowable range. The volume of load curtailment as well as their importance were considered to quantitatively assess the risk of power supply security under extreme precipitation scenarios. The effectiveness of the proposed method was verified in case studies based on the Southeast Australia Power System. Simulation results indicated that the risk of load shedding in extreme precipitation scenarios can be quantitatively estimated, and the overload probability of lines can be controlled within the allowable range through the proposed optimal load shedding scheme.

Funder

Science and Technology Project of State Grid of Zhejiang Electric Power Company, Ltd.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3