Effects of Operating Conditions on the Oxygen Removal Performance of the Deoxo Chamber in the Water Electrolysis System

Author:

Kwon Sooin123,Eom Seongyong1,Choi Gyungmin1

Affiliation:

1. School of Mechanical Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

2. School of Electronical Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

3. Sunbo Unitech R&D Center, 97, Centum jungang-ro, Haeundae-gu, Busan 48058, Republic of Korea

Abstract

Although the production of high-quality hydrogen from electrolysis systems is essential, research in this area is limited. In this study, we investigate the effect of operating conditions on the change in oxygen concentration through computational analysis for optimizing the deoxo chamber of a water electrolysis system. The test results of the water electrolysis system are simulated, and the oxygen concentration of the deoxo chamber is calculated through computational fluid dynamics analysis according to various conditions, such as the pressure, temperature, and flow rate. The O2 removal performance is significantly affected by the operating pressure and temperature, with an increase in both leading to a decrease in the O2 concentration in the water electrolysis system. Furthermore, we confirm that the change in the flow rate into the chamber has a minor effect on the change in the oxygen removal performance when the inlet flow rate was 1–1.5 kg/h and the length diameter ratio of the chamber is 38.4.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3