Thermal Characterization, Kinetic Analysis and Co-Combustion of Sewage Sludge Coupled with High Ash Ekibastuz Coal

Author:

Aidabulov Madiyar1,Zhakupov Daulet1ORCID,Zhunussova Khabiba1,Temireyeva Aknur1,Shah Dhawal1ORCID,Sarbassov Yerbol2ORCID

Affiliation:

1. Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

2. Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

Efficient utilization of natural resources and possible valorization of solid waste materials such as sewage sludge into secondary materials via thermal conversion and simultaneously recovering energy is vital for sustainable development. The continuous increase in metropolises leads to an enormous production of wet sewage sludge, which creates major environmental and technical issues. In this paper, the samples of sewage sludge from Astana’s waste water treatment plant are analyzed for their thermochemical properties, followed by thermogravimetric and kinetic analysis using the Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods. Overall, the calorific value of sewage sludge sample was 18.87 MJ/kg and was comparable to that of the bituminous coal samples. The activation energy varied from 140 to 410 kJ/mol with changing conversion from 0.1 to 0.7. Further, mono-combustion and co-combustion experiments of the sewage sludge with high ash bituminous coal were conducted using the laboratory scale bubbling fluidized bed rig, respectively. The difference in NOx emissions between mono-combustion of sewage sludge and co-combustion with coal were at around 150 ppm, while this value for SO2 was similar in average, but fluctuates between 150 and 350 ppm. Overall, the findings of this study will be useful in developing a co-combustion technology for a sustainable disposal of municipal sewage sludge.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Nazarbayev University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3