Modelling Porous Cementitious Media with/without Integrated Latent Heat Storage: Application Scenario

Author:

Nazari Sam Mona1ORCID,Schneider Jens2ORCID,Lutze Holger V.134

Affiliation:

1. Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, 64297 Darmstadt, Germany

2. Institute of Structural Mechanics, and Design (ISM+D), Technical University of Darmstadt, 64297 Darmstadt, Germany

3. IWW Water Centre, 45476 Mülheim an der Ruhr, Germany

4. Centre for Water and Environmental Research (ZWU), 45141 Essen, Germany

Abstract

This paper presents a methodological approach for the evaluation of the thermal behavior of cementitious porous media with/without integrated latent-heat thermal energy storage (LHTES). To achieve this goal, the Lewis-Nielsen model has been calibrated to predict the insulation properties of mineralized foamed concretes. Two pore-related microstructural fitting parameters, A and Φm, are presented according to the available data in the literature. In this regard, new findings are implemented for the classification of pore structure and prediction of the homogenized thermal conductivity of two-phase cementitious foams with or without phase change materials. The calibration and predictive analyses have been extended to a wide range of experimental data, including variation of binder types, porosities, and latent components. The presented analytical approach appears to agree well with experimental results and can be employed in the design of two-phase mineral foam materials. Then, to assess the thermal behavior of the predicted insulating envelopes, a one-dimensional (1D) enthalpy-based model is used which combines Fourier’s law of heat conduction, the first law of thermodynamics, Lewis-Nielsen conductivities, and the mixture theory for LHTES additions. The results demonstrated the importance of volumetric heat capacity for the thermal inertia of building envelopes.

Funder

Deutsche Forschungsgemeinschaft

Open Access Publishing Fund of Technical University of Darmstadt

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3