Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage

Author:

Rojek Izabela1ORCID,Mikołajewski Dariusz1,Mroziński Adam2ORCID,Macko Marek3ORCID

Affiliation:

1. Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

2. Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland

3. Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

Abstract

Overview: Photovoltaic (PV) systems are widely used in residential applications in Poland and Europe due to increasing environmental concerns and fossil fuel energy prices. Energy management strategies for residential systems (1.2 million prosumer PV installations in Poland) play an important role in reducing energy bills and maximizing profits. Problem: This article aims to check how predictable the operation of a household PV system is in the short term—such predictions are usually made 24 h in advance. Methods: We made a comparative study of different energy management strategies based on a real household profile (selected energy storage installation) based on both traditional methods and various artificial intelligence (AI) tools, which is a new approach, so far rarely used and underutilized, and may inspire further research, including those based on the paradigm of Industry 4.0 and, increasingly, Industry 5.0. Results: This paper discusses the results for different operational scenarios, considering two prosumer billing systems in Poland (net metering and net billing). Conclusions: Insights into future research directions and their limitations due to legal status, etc., are presented. The novelty and contribution lies in the demonstration that, in the case of domestic PV grids, even simple AI solutions can prove effective in inference and forecasting to support energy flow management and make it more predictable and efficient.

Funder

Kazimierz Wielki University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3