A Data-Driven Kernel Principal Component Analysis–Bagging–Gaussian Mixture Regression Framework for Pulverizer Soft Sensors Using Reduced Dimensions and Ensemble Learning

Author:

Jin Shengxiang1,Si Fengqi1,Dong Yunshan2,Ren Shaojun1

Affiliation:

1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

2. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

In light of the nonlinearity, high dimensionality, and time-varying nature of the operational conditions of the pulverizer in power plants, as well as the challenge of the real-time monitoring of quality variables in the process, a data-driven KPCA–Bagging–GMR framework for soft sensors using reduced dimensions and ensemble learning is proposed. Firstly, the methodology employs a Kernel Principal Component Analysis to effectively reduce the dimensionality of the collected process data in a nonlinear manner. Secondly, the reduced principal components are then utilized to reconstruct a refined set of input samples, followed by the application of the Bagging algorithm to obtain multiple subsets of the samples and develop corresponding Gaussian Mixture Regression models. Ultimately, the fusion output is achieved by calculating the weights of each local model based on Bayesian posterior probabilities. By conducting simulation experiments on the coal mill, the proposed approach has been validated as demonstrating superior predictive accuracy and excellent generalization capabilities.

Funder

National Natural Science Foundation of China

Open Foundation of Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3