Inhibition of MAOB Ameliorated High-Fat-Diet-Induced Atherosclerosis by Inhibiting Endothelial Dysfunction and Modulating Gut Microbiota

Author:

Tian Zhen1ORCID,Wang Xinyue1,Han Tianshu1,Wang Maoqing1,Ning Hua1,Sun Changhao1

Affiliation:

1. National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China

Abstract

In this study, monoamine oxidase B (MAOB) was activated under pathological conditions, and was the novel source of cardiovascular reactive oxygen species (ROS). ROS-induced endothelial dysfunction results in sustained and chronic vascular inflammation, which is central to atherosclerotic diseases. However, whether MAOB regulates endothelial oxidative stress and its related mechanism and whether gut microbiota mediates the anti-atherosclerosis effect of MAOB inhibitor remains unclear. In our study, MAOB expressions were elevated in high-fat diet (HFD) fed mice aortas, but only in vascular endothelial cells (not in smooth muscle cells). MAOB small interfering RNA significantly attenuated the palmitic-acid (PA)-induced endothelial oxidative stress and dysfunction. Furthermore, RNA-sequencing data revealed that MAOB knockdown decreased the levels of proinflammatory and apoptotic gene induced by PA. Microarray analysis and qPCR assay showed that miR-3620-5p was significantly decreased under the HFD condition. The dual-luciferase reporter, Western blot and qPCR assay confirmed that miR-3620-5p directly regulated MAOB by binding to its mRNA 3′UTR. Moreover, inhibition of MAOB by selegiline significantly ameliorated endothelial dysfunction and reduced atherosclerotic burden in HFD-fed ApoE−/− mice. Finally, 16S rRNA sequencing showed that selegiline significantly altered the community compositional structure of gut microbiota. Specifically, selegiline treatment enriched the abundance of Faecalibaculum and Akkermansia, decreased the abundance of unclassified_f__Lachnospiraceae, Desulfovibrio, and Blautia, and these genera were significantly correlated with the serum biochemical indices. Taken together, our findings showed that MAOB controlled endothelial oxidative stress homeostasis, and revealed the anti-atherosclerotic effect of selegiline by ameliorating endothelial dysfunction and modulating the composition and function of gut microbiota.

Funder

University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

National Key R&D Program of China

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference51 articles.

1. Inhibition of S-Adenosylhomocysteine Hydrolase Induces Endothelial Dysfunction via Epigenetic Regulation of p66shc-Mediated Oxidative Stress Pathway;Xiao;Circulation,2019

2. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities;Back;Nat. Rev. Cardiol.,2019

3. Statins and vulnerable plaque;Drakopoulou;Curr. Pharm. Des.,2017

4. Role of endothelial dysfunction in atherosclerosis;Davignon;Circulation,2004

5. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis;Gimbrone;Circ. Res.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3