Probiotics and Human Milk Differentially Influence the Gut Microbiome and NEC Incidence in Preterm Pigs

Author:

Melendez Hebib Valeria1,Taft Diana H.23,Stoll Barbara1,Liu Jinxin234ORCID,Call Lee1,Guthrie Gregory1ORCID,Jensen Nick23,Hair Amy B.5ORCID,Mills David A.23ORCID,Burrin Douglas G.1

Affiliation:

1. USDA Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA

2. Foods for Health Institute, University of California, Davis, CA 95616, USA

3. Department of Food Science and Technology, University of California, Davis, CA 95616, USA

4. Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

5. Section of Neonatology, Departments of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA

Abstract

Necrotizing enterocolitis (NEC) is the leading cause of death caused by gastrointestinal disease in preterm infants. Major risk factors include prematurity, formula feeding, and gut microbial colonization. Microbes have been linked to NEC, yet there is no evidence of causal species, and select probiotics have been shown to reduce NEC incidence in infants. In this study, we evaluated the effect of the probiotic Bifidobacterium longum subsp. infantis (BL. infantis), alone and in combination with a human milk oligosaccharide (HMO)—sialylactose (3′SL)—on the microbiome, and the incidence of NEC in preterm piglets fed an infant formula diet. We studied 50 preterm piglets randomized between 5 treatments: (1) Preterm infant formula, (2) Donor human milk (DHM), (3) Infant formula + 3′SL, (4) Infant formula + BL. infantis, and (5) Infant formula and BL. infantis + 3′SL. NEC incidence and severity were assessed through the evaluation of tissue from all the segments of the GI tract. The gut microbiota composition was assessed both daily and terminally through 16S and whole-genome sequencing (WGS) of rectal stool samples and intestinal contents. Dietary BL. infantis and 3′SL supplementation had no effect, yet DHM significantly reduced the incidence of NEC. The abundance of BL. infantis in the gut contents negatively correlated with disease severity. Clostridium sensu stricto 1 and Clostridium perfringens were significantly more abundant in NEC and positively correlated with disease severity. Our results suggest that pre- and probiotics are not sufficient for protection from NEC in an exclusively formula-based diet. The results highlight the differences in microbial species positively associated with both diet and NEC incidence.

Funder

USDA, Agricultural Research Service

Texas Medical Center Digestive Diseases Center

Gulf Coast Consortia, NLM Training Program in Biomedical Informatics

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3