Effects of L-Carnitine Intake on Exercise-Induced Muscle Damage and Oxidative Stress: A Narrative Scoping Review

Author:

Caballero-García Alberto1ORCID,Noriega-González David C.2,Roche Enrique345ORCID,Drobnic Franchek6ORCID,Córdova Alfredo7ORCID

Affiliation:

1. Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain

2. Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain

3. Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain

4. Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain

5. CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain

6. Medical Services Wolverhampton Wanderers FC, Wolverhampton WV3 9BF, UK

7. Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain

Abstract

Exercise-induced muscle damage results in decreased physical performance that is accompanied by an inflammatory response in muscle tissue. The inflammation process occurs with the infiltration of phagocytes (neutrophils and macrophages) that play a key role in the repair and regeneration of muscle tissue. In this context, high intensity or long-lasting exercise results in the breakdown of cell structures. The removal of cellular debris is performed by infiltrated phagocytes, but with the release of free radicals as collateral products. L-carnitine is a key metabolite in cellular energy metabolism, but at the same time, it exerts antioxidant actions in the neuromuscular system. L-carnitine eliminates reactive oxygen and nitrogen species that, in excess, alter DNA, lipids and proteins, disturbing cell function. Supplementation using L-carnitine results in an increase in serum L-carnitine levels that correlates positively with the decrease in cell alterations induced by oxidative stress situations, such as hypoxia. The present narrative scoping review focuses on the critical evaluation of the efficacy of L-carnitine supplementation on exercise-induced muscle damage, particularly in postexercise inflammatory and oxidative damage. Although both concepts appear associated, only in two studies were evaluated together. In addition, other studies explored the effect of L-carnitine in perception of fatigue and delayed onset of muscle soreness. In view of the studies analyzed and considering the role of L-carnitine in muscle bioenergetics and its antioxidant potential, this supplement could help in postexercise recovery. However, further studies are needed to conclusively clarify the mechanisms underlying these protective effects.

Funder

Caja Rural de Soria

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3