Data Augmentation and Feature Selection for the Prediction of the State of Charge of Lithium-Ion Batteries Using Artificial Neural Networks

Author:

Pohlmann Sebastian1ORCID,Mashayekh Ali2ORCID,Kuder Manuel3,Neve Antje1,Weyh Thomas2

Affiliation:

1. Institute of Distributed Intelligent Systems, University of the Bundeswehr, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

2. Institute of Electrical Energy Systems, University of the Bundeswehr, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

3. Bavertis GmbH, Marienwerderstraße 6, 81929 Munich, Germany

Abstract

Lithium-ion batteries are a key technology for the electrification of the transport sector and the corresponding move to renewable energy. It is vital to determine the condition of lithium-ion batteries at all times to optimize their operation. Because of the various loading conditions these batteries are subjected to and the complex structure of the electrochemical systems, it is not possible to directly measure their condition, including their state of charge. Instead, battery models are used to emulate their behavior. Data-driven models have become of increasing interest because they demonstrate high levels of accuracy with less development time; however, they are highly dependent on their database. To overcome this problem, in this paper, the use of a data augmentation method to improve the training of artificial neural networks is analyzed. A linear regression model, as well as a multilayer perceptron and a convolutional neural network, are trained with different amounts of artificial data to estimate the state of charge of a battery cell. All models are tested on real data to examine the applicability of the models in a real application. The lowest test error is obtained for the convolutional neural network, with a mean absolute error of 0.27%. The results highlight the potential of data-driven models and the potential to improve the training of these models using artificial data.

Funder

dtec.bw—Digitalization and Technology Research Center of the Bundeswehr

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3