Fluorescent Graphitic Carbon Nitride (g-C3N4)-Embedded Hyaluronic Acid Microgel Composites for Bioimaging and Cancer-Cell Targetability as Viable Theragnostic

Author:

Suner Selin S.1ORCID,Sahiner Mehtap2,Demirci Sahin1,Umut Evrim34ORCID,Sahiner Nurettin156ORCID

Affiliation:

1. Department of Chemistry, Faulty of Science, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey

2. Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University Terzioglu Campus, 17100 Canakkale, Turkey

3. Department of Medical Imaging Techniques, School of Healthcare, Dokuz Eylul University, 35330 Izmir, Turkey

4. BioIzmir-Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, 35330 Izmir, Turkey

5. Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA

6. Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA

Abstract

Fluorescent graphitic carbon nitride (g-C3N4) doped with various heteroatoms, such as B, P, and S, named Bg-C3N4, Pg-C3N4, and Sg-C3N4, were synthesized with variable band-gap values as diagnostic materials. Furthermore, they were embedded within hyaluronic acid (HA) microgels as g-C3N4@HA microgel composites. The g-C3N4@HA microgels had a 0.5–20 μm size range that is suitable for intravenous administration. Bare g-C3N4 showed excellent fluorescence ability with 360 nm excitation wavelength and 410–460 emission wavelengths for possible cell imaging application of g-C3N4@HA microgel composites as diagnostic agents. The g-C3N4@HA-based microgels were non-hemolytic, and no clotting effects on blood cells or cell toxicity on fibroblasts were observed at 1000 μg/mL concentration. In addition, approximately 70% cell viability for SKMEL-30 melanoma cells was seen with Sg-C3N4 and its HA microgel composites. The prepared g-C3N4@HA and Sg-C3N4@HA microgels were used in cell imaging because of their excellent penetration capability for healthy fibroblasts. Furthermore, g-C3N4-based materials did not interact with malignant cells, but their HA microgel composites had significant penetration capability linked to the binding function of HA with the cancerous cells. Flow cytometry analysis revealed that g-C3N4 and g-C3N4@HA microgel composites did not interfere with the viability of healthy fibroblast cells and provided fluorescence imaging without any staining while significantly decreasing the viability of cancerous cells. Overall, heteroatom-doped g-C3N4@HA microgel composites, especially Sg-C3N4@HA microgels, can be safely used as multifunctional theragnostic agents for both diagnostic as well as target and treatment purposes in cancer therapy because of their fluorescent nature.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3