Measurement of Trace Elements (Zinc, Copper, Magnesium, and Iron) in the Saliva of Horses: Validation Data and Changes in Equine Gastric Ulcer Syndrome (EGUS)

Author:

Muñoz-Prieto Alberto1ORCID,Cerón José1,Tecles Fernando1,Cuervo María2ORCID,Contreras-Aguilar Maria1ORCID,Ayala Ignacio1,Oudada-Guillén Adrián1,Pardo-Marín Luis1ORCID,Hansen Sanni3ORCID

Affiliation:

1. Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain

2. Department of Animal Medicine, Faculty of Veterinary, University of Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain

3. Section Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark

Abstract

The objective of this study was to evaluate the possible use of spectrophotometric assays for the measurement of trace elements, including Zinc (Zn), Copper (Cu), Magnesium (Mg), and iron (Fe) in the saliva of horses and study their possible changes in equine gastric ulcer syndrome (EGUS). EGUS is a highly prevalent disease, with a current high incidence due to the increase in intensive management conditions. There are two EGUS diseases: equine squamous gastric disease (ESGD) and equine glandular gastric disease (EGGD), which can appear individually or together. For this purpose, automated spectrophotometric assays for measuring these analytes in horse saliva were analytically validated. Then, these analytes were measured in the saliva of horses with only ESGD, only EGGD, both ESGD and EGGD and a group of healthy horses. The methods used to measure the analytes were precise and accurate. Horses diagnosed with EGGD presented significantly lower levels of Zn and Mg. Fe concentrations were significantly lower in the saliva of horses with ESGD and EGGD. Overall, these results indicate that there are changes in trace elements in saliva in EGUS that could reflect the physiopathological mechanisms involved in this process and open the possibility of using trace elements as biomarkers of this syndrome.

Funder

“Ramón y Cajal”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3