Developing a Discharge Estimation Model for Ungauged Watershed Using CNN and Hydrological Image

Author:

Kim Da YeORCID,Song Chul MinORCID

Abstract

This study aimed to estimate the discharge in ungauged watersheds. To this end, we herein deviated from the model development methodology of previous studies and used convolution neural network (CNN), a deep training algorithm, and hydrological images. As the CNN model was developed for solving classification issues in general, it is unsuitable for simulating the discharge, which is a continuous variable. Therefore, the fully connected layer of the CNN model was improved. Moreover, images reflecting the hydrological conditions rather than a general photograph were used as input data for the CNN model. Three study areas that have discharge gauged data were set for the model’s training and testing. The data from two of the three study areas were used for CNN model training, and the data of the other were used to evaluate model prediction performance. The results of this study demonstrate a moderate predictive success of the discharge of an ungauged watershed using the CNN model and hydrological images. Therefore, it can be suitable as a methodology for the discharge estimation of ungauged watersheds. Simultaneously, it is expected that our methodology can be applied to the field of remote sensing or to the field of real-time discharge simulation using satellite imagery on a global scale or across a wide area.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3