Abstract
A two-dimensional non-hydrostatic shallow-water model for weakly dispersive waves is developed using the least-squares finite-element method. The model is based on the depth-averaged, nonlinear and non-hydrostatic shallow-water equations. The non-hydrostatic shallow-water equations are solved with the semi-implicit (predictor-corrector) method and least-squares finite-element method. In the predictor step, hydrostatic pressure at the previous step is used as an initial guess and an intermediate velocity field is calculated. In the corrector step, a Poisson equation for the non-hydrostatic pressure is solved and the final velocity and free-surface elevation is corrected for the new time step. The non-hydrostatic shallow-water model is verified and applied to both wave and flow driven fluid flows, including solitary wave propagation in a channel, progressive sinusoidal waves propagation over a submerged bar, von Karmann vortex street, and ocean circulations of Dongsha Atolls. It is found hydrostatic shallow-water model is efficient and accurate for shallow water flows. Non-hydrostatic shallow-water model requires 1.5 to 3.0 more cpu time than hydrostatic shallow-water model for the same simulation. Model simulations reveal that non-hydrostatic pressure gradients could affect the velocity field and free-surface significantly in case where nonlinearity and dispersion are important during the course of wave propagation.
Funder
Ministry of Science and Technology, Taiwan
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference64 articles.
1. The Applied Dynamics of Ocean Surface Waves;Mei,1983
2. The Dynamics of the Upper Ocean;Phillips,1980
3. The Shallow-Water Wave Equations: Formulation, Analysis and Application;Kinnmark,1986
4. A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation
5. Nonlinear Water Waves;Debnath,1994
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献