Simulation Algorithm for Water Elutriators: Model Calibration with Plant Data and Operational Simulations

Author:

Roy Jonathan,Bazin Claude,Larachi FaïçalORCID

Abstract

A dynamic simulation algorithm based on 1-D transient convection/diffusion transport per particle size class is proposed to simulate a hydraulic classifier operated to selectively remove quartz from an iron oxide concentrate produced by processing the ore from an iron ore mine in northeastern Canada. The calibrated model is used to simulate the operation of dense bed hydraulic classifiers of different sizes and/or under different operating conditions. The simulator predicts the behavior and characteristics of the pulp at different depths within the classifier as a function of time. The simulator is validated by confronting the simulation results to experimental data obtained from sampling industrial and laboratory classifiers. The simulator is then used to assess the role of the fluidization or teeter water and of bed density on the quality of the produced separation of quartz from the valuable iron oxide of the processed ore. The knowledge acquired in the noise-free environment of simulation provides clues on the way to manipulate the hydraulic classifier operating variables in a process control strategy for an industrial scale unit.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference39 articles.

1. Wills, A.B., and Finch, A.J. (2015). An Introduction to the Practical Aspect of Ore Treatment and Mineral Recovery, Elsevier.

2. The role gravity concentration in modern processing plants;Miner. Eng.,1999

3. Advanced gravity concentration of fine particules;Miner. Process. Extr. Metall. Rev.,2018

4. A short review on hydraulic classification and its development in mineral industry;Powder Technol.,2015

5. Bazin, C., and Payenzo, G.M. (2011, January 5–8). Analysis and modelling of the operation of a hydraulic classifier for iron ore concentrate. Proceedings of the Physical Separation: Mineral Engineering Conference, Falmouth, UK.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3