Three-Dimensional Structural Modeling (3D SM) and Joint Geophysical Characterization (JGC) of Hydrocarbon Reservoir

Author:

Zhang BaoyiORCID,Tong Yongqiang,Du Jiangfeng,Hussain Shafqat,Jiang Zhengwen,Ali Shahzad,Ali Ikram,Khan MajidORCID,Khan Umair

Abstract

A complex structural geology generally leads to significant consequences for hydrocarbon reservoir exploration. Despite many existing wells in the Kadanwari field, Middle Indus Basin (MIB), Pakistan, the depositional environment of the early Cretaceous stratigraphic sequence is still poorly understood, and this has implications for regional geology as well as economic significance. To improve our understanding of the depositional environment of complex heterogeneous reservoirs and their associated 3D stratigraphic architecture, the spatial distribution of facies and properties, and the hydrocarbon prospects, a new methodology of three-dimensional structural modeling (3D SM) and joint geophysical characterization (JGC) is introduced in this research using 3D seismic and well logs data. 3D SM reveals that the field in question experienced multiple stages of complex deformation dominated by an NW to SW normal fault system, high relief horsts, and half-graben and graben structures. Moreover, 3D SM and fault system models (FSMs) show that the middle part of the sequence underwent greater deformation compared to the areas surrounding the major faults, with predominant one oriented S30°–45° E and N25°–35° W; with the azimuth at 148°–170° and 318°–345°; and with the minimum (28°), mean (62°), and maximum (90°) dip angles. The applied variance edge attribute better portrays the inconsistencies in the seismic data associated with faulting, validating seismic interpretation. The high amplitude and loss of frequency anomalies of the sweetness and root mean square (RMS) attributes indicate gas-saturated sand. In contrast, the relatively low-amplitude and high-frequency anomalies indicate sandy shale, shale, and pro-delta facies. The petrophysical modeling results show that the E sand interval exhibits high effective porosity (∅eff) and hydrocarbon saturation (Shc) compared to the G sand interval. The average petrophysical properties we identified, such as volume of shale (Vshale), average porosity (∅avg), ∅eff, water saturation (SW), and the Shc of the E sand interval, were 30.5%, 17.4%, 12.2%, 33.2% and, 70.01%, respectively. The findings of this study can help better understand the reservoir’s structural and stratigraphic characteristics, the spatial distribution of associated facies, and petrophysical properties for reliable reservoir characterization.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3