Abstract
Portland cement is the most common type of cement and one of the most important ingredients in concrete. Concrete, on the other hand, is the most used building material worldwide just behind the water with an increasing usage trend in infrastructure for the upcoming years. During the production process of cement, massive CO2 emissions are released into the environment, while large amounts of raw materials and energy are consumed. In the present study, Portland type cement was prepared in laboratory-scale by Greek Wet Fly Ash and Mill Scales, as well as conventional raw materials such as limestone, shale and lava. The experiments were conducted at 1450 °C and 1340 °C. The fired compositions were characterized by XRD, Q–XRD, optical microscopy, SEM/EDS and the concrete specimens were tested for their compressive strength. The results indicated that formation of cement clinker at lower temperatures (1340 °C) is feasible with the combined use of natural raw materials and industrial byproducts following the standard production route of cement industries. Finally, the so-obtained cement presented compressive strength values comparable to the conventional ones fired at 1450 °C.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference64 articles.
1. USGS Science for a Changing World. Mineral Commodity Summaries 2021,2021
2. Origin of the special chemical symbols used by cement chemists;Bogue;J. Portland Cem. Assoc.,1961
3. Manufacture of Portland Cement
4. Cement Chemistry;Taylor,1990
5. Integrated Annual Report (IAR 2020)https://www.titan-cement.com/newsroom/annualreports/
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献