A Combined EMPA and LA-ICP-MS Study of Muscovite from Pegmatites in the Chinese Altai, NW China: Implications for Tracing Rare-Element Mineralization Type and Ore-Forming Process

Author:

Zhou Qifeng,Qin Kezhang,Tang Dongmei,Wang Chunlong

Abstract

The mineralogical studies of rare-element (REL) pegmatites are important for unraveling the ore-forming process and evaluating REL mineralization potential. The Chinese Altai orogenic belt hosting more than 100,000 pegmatite dykes is famous for rare-metal resources worldwide and diverse REL mineralization types. In this paper, we present the results of EMPA and LA-ICP-MS for muscovite from the typical REL pegmatite dykes of the Chinese Altai. The studied pegmatites are Li-Be-Nb-Ta, Li-Nb-Ta, Nb-Ta, Be-Nb-Ta, Be and barren pegmatites. The Li+ accompanied with Fe, Mg and Mn substitute for Al3+ at the octahedral site in muscovite from the REL pegmatites, and the substitution of Rb by Cs at the interlayer space is identified in muscovite from the Be pegmatites. The P and B contents increase with evolution degree and the lenses from the Nb-Ta pegmatite are produced at late fluid-rich stage with high fluxes (P and B). The enrichment of HFSE in muscovite indicates a Nb-Ta-Sn-W rich pegmatite magma for the Be-Nb-Ta pegmatite. From barren pegmatite, beryl-bearing zone, to spodumene-bearing zone, the evolution degrees of pegmatite-forming magmas progressively increase. In the Chinese Altai, the possible indicators of muscovite for REL mineralization types include Rb (ca. 400–600 ppm, barren pegmatite; ca. 1200–4000 ppm, Be pegmatite; >4500 ppm, Li pegmatite), Cs (ca. 5–50 ppm, barren pegmatite; ca. 100–500 ppm, Be pegmatite; >300 ppm, Li pegmatite) and Ge (<3 ppm, barren pegmatite; ca. 4–6 ppm, Be pegmatite; ca. 6–12 ppm, Li pegmatite) coupled with Ta, Be (both <10 ppm, barren pegmatite) and FeO (ca. 3–4 wt%, Be pegmatite; ca. 1–2.5 wt%, Li pegmatite). The plots of Nb/Ta vs. Cs and K/Rb vs. Ge are proposed to discriminate barren, Be- and Nb-Ta-(Li-Be-Rb-Cs) pegmatites. The Li, Be, Rb, Cs and F concentrations of forming liquid are evaluated based on the trace element compositions of muscovite. The high Rb and Cs contents of liquid and lower Be contents than beryl saturation value indicate that both highly evolved pegmatite magma and low temperature at emplacement contribute to beryl formation. The liquids saturated with spodumene have large variations of Li, possibly related to metastable state at Li unsaturation–supersaturation or heterogeneous distribution of lithium in the system.

Funder

National Natural Science Foundation of China

the Key projects in National Science and Technology Pillar Program

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3