Metallic Copper (Cu[0]) Obtained from Cu2+-Rich Acidic Mine Waters by Two Different Reduction Methods: Crystallographic and Geochemical Aspects

Author:

Sánchez-España JavierORCID,Ilin AndreyORCID,Yusta Iñaki

Abstract

The recovery of valuable metals from different types of wastes has become of prime strategic interest given the scarcity of primary critical raw materials at international scale. Implementation of new methods or refinement of classical techniques with modern technological advances is, therefore, an active research field. Mine wastes are of special interest because their high metal concentrations make them environmentally harmful and economically profitable at the same time. In this study, we evaluated two different methods of Cu recovery from extremely acidic mine waters seeping from wastes and abandoned mines in SW Spain. Through a series of different batch experiments, we compared the method efficiency and crystallographic properties of elemental copper (Cu[0]) obtained by reduction of Cu2+ ions by (1) chemical reduction using ascorbic acid at different environmental conditions of pH (1.50–3.95), temperature (25–80 °C) and ascorbic acid concentration (10 mM to 0.1 M), and (2) classical cementation method with scrap iron at pH 1.50 and 25 °C. Our study demonstrates that the precipitation of Cu[0] can take place at pH 3.95 and low AA concentrations (0.1 M), resulting in large (µm-scale), perfectly developed crystals of copper with pseudoprismatic to acicular habit after 24 h of aging, likely through formation of a transient compound consisting in Cu2+-ascorbate and/or cuprite (Cu2O) nanocolloids. Reduction experiments at higher AA concentrations (0.1 M) showed faster precipitation kinetics and resulted in high-purity (>98%) copper suspensions formed by subrounded nanoparticles. The AA method, however, yielded very low recovery rates (15–25%) because of the low pH values considered. The cementation method, which produced tree-like aggregates formed by sub-micron crystals arranged in different directions, proved to be much more efficient (>98% recovery) and cost-effective.

Funder

Spanish Ministry of Science and Innovation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference42 articles.

1. Electroless copper deposition: A critical review

2. Synthesizing highly concentrated hydrosols of copper nanoparticles via reduction by ascorbic acid in the presence of gelatose;Saikova;Chem. Sust. Dev.,2013

3. Electrochemical synthesis of metallic micro-rose having petals in nanometer dimensions

4. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3