Influence of P and Ti on Phase Formation at Solidification of Synthetic Slag Containing Li, Zr, La, and Ta

Author:

Schirmer Thomas,Qiu HaoORCID,Goldmann Daniel,Stallmeister Christin,Friedrich BerndORCID

Abstract

In the future, it will become increasingly important to recover critical elements from waste materials. For many of these elements, purely mechanical processing is not efficient enough. An already established method is pyrometallurgical processing, with which many of the technologically important elements, such as Cu or Co, can be recovered in the metal phase. Ignoble elements, such as Li, are known to be found in the slag. Even relatively base or highly redox-sensitive elements, such as Zr, REEs, or Ta, can be expected to accumulate in the slag. In this manuscript, the methods for determining the phase formation and the incorporation of these elements were developed and optimized, and the obtained results are discussed. For this purpose, oxide slags were synthesized with Al, Si, Ca, and the additives, P and Ti. To this synthetic slag were added the elements, Zr and La (which can be considered proxies for the light REEs), as well as Ta. On the basis of the obtained results, it can be concluded that Ti or P can have strong influences on the phase formation. In the presence of Ti, La, and Ta, predominantly scavenged by perovskite (Ca1−wLa2/3wTi1−(x+y+z)Al4/3xZryTa4/5zO3), and Zr predominantly as zirconate (Ca1−wLa2/3wZr4−(x+y+z)Al4/3xTiyTa4/5zO9), with the P having no effect on this behavior. Without Ti, the Zr and Ta are incorporated into the pyrochlore (La2−xCa3/2x−yZr2+2/4y−zTa4/5zO7), regardless of the presence of phosphorus. In addition to pyrochlore, La accumulates primarily in britholite-type La oxy- or phosphosilicates. Without P and Ti, similar behavior is observed, except that the britholite-like La silicates do not contain P, and the scavenging of La is less efficient. Lithium, on the other hand, forms its own compounds, such as LiAlO2(Si), LiAl5O8, eucryptite, and Li silicate. Additionally, in the presence of P, Li3PO4 is formed, and the eucryptite incorporates P, which indicates an additional P-rich eutectic melt.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3