Iron Ore Tailing Composition Estimation Using Fused Visible–Near Infrared and Thermal Infrared Spectra by Outer Product Analysis

Author:

Bao Nisha,Lei Haimei,Cao Yue,Liu Shanjun,Gu Xiaowei,Zhou Bin,Fu Yanhua

Abstract

Iron ore tailings are mainly composed of SiO2 and iron, whose content determines the potential reuse strategy of the tailings. Compared with the traditional wet chemistry approach, spectroscopy has proven its superior effectiveness in characterizing and predicting minerals, such as iron oxides, clay, and SiO2. This study aims to estimate the content of SiO2 and TFe in iron ore tailings based on visible–near infrared (VIS–NIR, 350–2500 nm) and thermal infrared (TIR, 8–14 μm) spectroscopy. The outer product analysis (OPA) method is used to combine VIS–NIR and TIR spectral domains, from which an outer product matrix of fusion data can be generated. The study area is the iron ore tailing dam from Waitoushan, which is one of the super-large iron deposits in the Anshan–Benxi iron cluster of northeastern China. The spectral analysis results demonstrated the following: (1) The reflectance feature at 1163–2499 nm in the VIS–NIR range correlates with TFe and the emissivity feature at 8–9.4 and 10.7–12 μm in the TIR range correlates with SiO2. (2) Compared with the original absorbance spectra, the correlation coefficients of fusion spectra improve from 0.66 to 0.87 for TFe and from 0.64 to 0.84 for SiO2. (3) The partial least squares regression, random forest (RF), and extreme learning machine exploiting particle swarm optimization modeling methods are established for SiO2 and TFe estimation. The prediction accuracy results indicate that the prediction model with OPA-fused spectra performs significantly better than with individual VIS–NIR and TIR spectra. The RF model with input-fused spectra provides the highest accuracy with the coefficients of determination of 0.95 and 0.91, root mean square errors of 0.97% and 0.96%, and ratios of performance to interquartile distance of 6.49 and 2.31 for SiO2 and TFe content estimation, respectively. These outcomes provide a theoretical basis and technical support for tailing composition estimation using spectroscopy.

Funder

National Natural Science Foundation of China

Major Special Project of Science and Technology Plan

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3