Steady-State Microstructures of Quartz Revisited: Evaluation of Stress States in Deformation Experiments Using a Solid-Medium Apparatus

Author:

Shimizu IchikoORCID,Michibayashi KatsuyoshiORCID

Abstract

Dynamically recrystallizing quartz is believed to approach a steady-state microstructure, which reflects flow stress in dislocation creep. In a classic experimental study performed by Masuda and Fujimura in 1981 using a solid-medium deformation apparatus, two types of steady-state microstructures of quartz, denoted as S and P, were found under varying temperature and strain rate conditions. However, the differential stresses did not systematically change with the deformation conditions, and unexpectedly high flow stresses (over 700 MPa) were recorded on some experimental runs compared with the applied confining pressure (400 MPa). Internal friction in the sample assembly is a possible cause of reported high differential stresses. Using a pyrophyllite assembly similar to that used in the previous work and setting up paired load cells above and below the sample assembly, we quantified the frictional stress acting on the sample and corrected the axial stress. The internal friction changed in a complicated manner during pressurization, heating, and axial deformation at a constant strain rate. Our results suggest that Masuda and Fujimura overestimated the differential stress by about 200 MPa in their 800 °C runs. Crystallographic fabrics in the previous experimental sample indicated that the development of elongated quartz grains, which are characteristics of Type-S microstructures, was associated with preferential growth of unfavorably oriented grains during dynamic recrystallization.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3