Fractional Crystallization and Partial Melting of the Paleoproterozoic Gneisses and Pegmatite in the Giant Husab Uranium Deposit, Namibia

Author:

Li Shan-Shan,Zeng Wei,Zhang Huai-Feng,Wang Lu,Shivute Espine Tuyakula,Qiu Kun-FengORCID

Abstract

The giant Husab uranium deposit is located in the Paleoproterozoic Abbabis Metamorphic Complex, which was highly partially melted and metamorphosed during the Damara Orogenic Event. The timing of magma emplacement has been investigated; however, the petrogenesis is unclear. Here we reported petrology, geochemistry, and monazite U-Pb age data from biotite granitic gneisses, syeno-granite, syeno-granitic pegmatites, syeno-granitic gneiss, granitic syenite and biotite quartz monzonites of this complex. Geochemical data suggest that these Paleoproterozoic rocks show high SiO2, Al2O3, and K2O, moderate Na2O, low CaO and Fe2O3, and MgO abundance. The alkali-calcic to alkalic, peraluminous, low Fe-number, depletion in HFSE (Nb-Ta, Ti) and enrichment in LILE (e.g., Rb, Pb) characteristic correspond with I- and S-type granite. Major and trace elements are strongly fractionated with the increase of SiO2, which, together with strongly fractionated LREE patterns and high (La/Yb)N ratios of the biotite granitic gneiss and syeno-granitic gneiss, suggest that the magma was highly evolved and fractionated. Monazite U-Pb data show three metamorphic age groups of 581–535 Ma, 531–522 Ma and 518–484 Ma. The increasing trend of La/Sm and La/Yb with the increase of La, suggest these rocks most likely experienced a partial melting process during the late Palaeozoic metamorphism. We, thus, propose a fractional crystallization model for the generation of the Paleoproterozoic Abbabis Metamorphic Complex basement rock, which was metamorphosed and melted during the late Palaeozoic Damara Orogenic Event and provided the magma sources for primary uranium mineralization.

Funder

National Key Research Program

National Natural Science Foundation of China

Beijing Nova Program

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3