Abstract
Secondary hematite (SH) is a serious factor resulting in reduction degradation of iron ore sinter in a blast furnace; however, until now, a quantitative study for SH formation had not been reported. In this work, the effects of gangue composition, including MgO, Al2O3 and SiO2, on the solid-state formation in the sintering process of iron ore fines were investigated quantitatively. It shows that the SH formation decreased from 67.84% to 46.11%, 35.44% and 22.37% after adding 1.0%, 3.0% and 5.0% MgO, respectively, while for Al2O3, the amount increased to 69.38%, 69.98% and 70.56%, respectively. For SiO2, the amount changed to 68.14%, 61.59% and 47.96%, respectively. Simultaneously, the magnetite (magnesioferrite) formation increased from 8.24% to 34.79%, 50.26% and 70.45% after adding 1.0%, 3.0% and 5.0% MgO, respectively. For Al2O3 and SiO2, the amount changed to 8.95%, 8.37%, 7.62% and 7.62%, 11.10%, 18.77%, respectively, compared with no gangue. This indicates that the SH formation increased with decrease in magnesioferrite. It was found that the decrease in SH formation relates to the diffusion of Mg2+ in magnesioferrite, which inhibits the solid-state formation of SH kinetically. A supposition was suggested that a maghemite existed at a high temperature, and decreased with an increase in MgO addition. This would be another reason to improve the degradation performance of iron ore sinter.
Funder
National Natural Science Foundation of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献