Abstract
In this study, monoammonium glycyrrhizinate (MAG) was introduced into cetyltrimethyl ammonium bromide (CTAB)-modified ZnO/attapulgite (APT) via a mechanical process to form performance-enhanced antibacterial nanocomposites (MAG/C–ZnO/APT). The APT supported ZnO nanocomposite (ZnO/APT) was prepared by a conventional precipitation method, and 20–50 nm of globular ZnO nanoparticles were uniformly decorated on APT nanorods. The FTIR and zeta potential analyses demonstrated that modification by CTAB facilitated the loading of MAG into ZnO/APT by H-bonding and electrostatic interactions. Antibacterial evaluation results indicate that MAG/C–ZnO/APT nanocomposites with CTAB and MAG doses of 2.5% and 0.25%, respectively, exhibited synergistically enhanced inhibitory activities against Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamases Escherichia coli, with minimum inhibitory concentrations of 1, 0.1, 0.25, 5, 0.1, and 2.5 mg/mL, respectively, which are better than those of ZnO/APT, C–ZnO/APT and MAG. Moreover, the nanocomposites had low cytotoxicity on human normal cell line L-O2. Therefore, this study provided a more effective strategy to extend the antibacterial spectrum and strengthen the inhibitory effects of antibiotic-free materials to address increasingly serious situations of microbial infection.
Funder
Major Projects of the Regional Key Project of the Science and Technology Service of the Chinese Academy of Sciences
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献