Filling Tricompartmental Ligands with GdIII and ZnII Ions: Some Structural and MRI Studies

Author:

Corredoira-Vázquez Julio,Fondo Matilde,Sanmartín-Matalobos Jesús,Taboada Pablo,García-Deibe Ana

Abstract

Here we report the synthesis and characterization of a mononuclear gadolinium complex (Gd) and two heteronuclear Zn-Gd complexes (ZnGd and Zn2Gd), which contain two similar three-armed ligands that display an external compartment suitable for lanthanoid ions, and two internal compartments adequate for zinc (II) ions [H3L′ = (2-(3-formyl-2-hydroxy-5-methyl phenyl)-1,3-bis[4 -(3-formyl-2-hydroxy-5-methylphenyl)-3-azabut-3-enyl]-1,3-imidazolidine; H3L = 2-(5-bromo-2-hydroxy-3-methoxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxy-3-methoxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine]. The synthetic methods used were varied, but the use of a metalloligand, [Zn2(L)AcO], as starting material was the key factor to obtain the heterotrinuclear complex Zn2Gd. The structure of the precursor dinuclear zinc complex is mostly preserved in this complex, since it is based on a compact [Zn2Ln(L)(OH)(H2O)]3+ residue, with a µ3-OH bridge between the three metal centers, which are almost forming an isosceles triangle. The asymmetric spatial arrangement of other ancillary ligands leads to chirality, what contrasts with the totally symmetric mononuclear gadolinium complex Gd. These features were confirmed by the crystal structures of both complexes. Despite the presence of the bulky compartmental Schiff base ligand, the chiral heterotrinuclear complex forms an intricate network which is predominately expanded in two dimensions, through varied H-bonds that connect not only the ancillary ligands, but also the nitrate counterions and some solvated molecules. In addition, some preliminary magnetic resonance imaging (MRI) studies have been made to determine the relaxivities of the three gadolinium complexes, with apparently improved T1 and T2 relaxivities with increasing zinc nuclearity, since both transversal and longitudinal relaxivities appear to enhance in the sequence Gd < ZnGd < Zn2Gd.

Funder

Ministerio de Economía y Competitividad

Xunta de Galicia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3