Robustness Analysis of DCE-MRI-Derived Radiomic Features in Breast Masses: Assessing Quantization Levels and Segmentation Agreement

Author:

Militello CarmeloORCID,Rundo LeonardoORCID,Dimarco MariangelaORCID,Orlando AlessiaORCID,D’Angelo Ildebrando,Conti VincenzoORCID,Bartolotta Tommaso VincenzoORCID

Abstract

Machine learning models based on radiomic features allow us to obtain biomarkers that are capable of modeling the disease and that are able to support the clinical routine. Recent studies have shown that it is fundamental that the computed features are robust and reproducible. Although several initiatives to standardize the definition and extraction process of biomarkers are ongoing, there is a lack of comprehensive guidelines. Therefore, no standardized procedures are available for ROI selection, feature extraction, and processing, with the risk of undermining the effective use of radiomic models in clinical routine. In this study, we aim to assess the impact that the different segmentation methods and the quantization level (defined by means of the number of bins used in the feature-extraction phase) may have on the robustness of the radiomic features. In particular, the robustness of texture features extracted by PyRadiomics, and belonging to five categories—GLCM, GLRLM, GLSZM, GLDM, and NGTDM—was evaluated using the intra-class correlation coefficient (ICC) and mean differences between segmentation raters. In addition to the robustness of each single feature, an overall index for each feature category was quantified. The analysis showed that the level of quantization (i.e., the ‘bincount’ parameter) plays a key role in defining robust features: in fact, in our study focused on a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) dataset of 111 breast masses, sets with cardinality varying between 34 and 43 robust features were obtained with ‘binCount’ values equal to 256 and 32, respectively. Moreover, both manual segmentation methods demonstrated good reliability and agreement, while automated segmentation achieved lower ICC values. Considering the dependence on the quantization level, taking into account only the intersection subset among all the values of ‘binCount’ could be the best selection strategy. Among radiomic feature categories, GLCM, GLRLM, and GLDM showed the best overall robustness with varying segmentation methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3