Author:
Yin Didi,Cheng Siyuan,Pan Boxu,Qiao Yuanyuan,Zhao Wei,Wang Dongyu
Abstract
The KBQA (Knowledge-Based Question Answering) system is an essential part of the smart customer service system. KBQA is a type of QA (Question Answering) system based on KB (Knowledge Base). It aims to automatically answer natural language questions by retrieving structured data stored in the knowledge base. Generally, when a KBQA system receives the user’s query, it first needs to recognize topic entities of the query, such as name, location, organization, etc. This process is the NER (Named Entity Recognition). In this paper, we use the Bidirectional Long Short-Term Memory-Conditional Random Field (Bi-LSTM-CRF) model and introduce the SoftLexicon method for a Chinese NER task. At the same time, according to the analysis of the characteristics of application scenario, we propose a fuzzy matching module based on the combination of multiple methods. This module can efficiently modify the error recognition results, which can further improve the performance of entity recognition. We combine the NER model and the fuzzy matching module into an NER system. To explore the availability of the system in some specific fields, such as a power grid field, we utilize the power grid-related original data collected by the Hebei Electric Power Company to improve our system according to the characteristics of data in the power grid field. We innovatively make the dataset and high-frequency word lexicon in the power grid field, which makes our proposed NER system perform better in recognizing entities in the field of power grid. We used the cross-validation method for validation. The experimental results show that the F1-score of the improved NER model on the power grid dataset reaches 92.43%. After processing the recognition results by using the fuzzy matching module, about 99% of the entities in the test set can be correctly recognized. It proves that the proposed NER system can achieve excellent performance in the application scenario of a power grid. The results of this work will also fill the gap in the research of intelligent customer-service-related technologies in the power grid field in China.
Funder
State Grid Corporation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference55 articles.
1. Computing machinery and intelligence;Turing,2009
2. Siri
https://www.apple.com.cn/siri/
3. ALIME
https://www.alixiaomi.com/
4. NetEase Qiyu
https://qiyukf.com/
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献