Characteristics of Acoustic Emission Caused by Intermittent Fatigue of Rock Salt

Author:

Cui YaoORCID,Liu ChangjunORCID,Qiao Nan,Qi Siyu,Chen Xuanyi,Zhu Pengyu,Feng Yongneng

Abstract

This paper compares classic (continuous) fatigue tests and fatigue tests carried out with time intervals of no stress in rock salt using a multifunctional testing machine and acoustic emission equipment. The results show that time intervals of no stress have a strong impact on the fatigue activity of rock salt. In fatigue tests with intervals, the residual strain in circles following an interval (α circles) is generally larger than that in circles before the intervals (β circles). The insertion of a time interval with no stress in the fatigue process accelerates the accumulation of residual strain: the longer the interval, the faster the residual strain accumulates during the fatigue process and the shorter the fatigue life of the rock salt. α circles produce a greater number of acoustic emission counts than β circles, which demonstrates that residual stress leads to internal structural adjustment of rock salt on a mesoscopic scale. During intervals of no stress, acoustic emission activity becomes more active in α circles because of reverse softening caused by the Bauschinger effect, which accelerates the accumulation of plastic deformation. A qualitative relationship between the accumulated damage variable and the time interval is established. A threshold in the duration of the time interval exists (around 900 s).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. A Damage Mechanics Treatment of Creep Failure in Rock Salt

2. Recovery and Healing of Damage in WIPP Salt

3. Surface diffusivity of cleaved NaCl crystals as a function of humidity: Impedance spectroscopy measurements and implications for crack healing in rock salt;Spiers;J. Geophys. Res.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3