Research on Meshing Characteristics of Trochoidal Roller Pinion Rack Transmission

Author:

Wang Haiwei,Li Lulu,Liu Geng

Abstract

As a precision transmission mechanism, the trochoidal roller pinion rack has been paid more and more attention in recent years, but its meshing characteristics have not been deeply explored. In order to investigate the meshing characteristics of the trochoidal roller pinion rack transmission, it is particularly important to research its line of action and meshing stiffness. The equation of the line of action of the trochoidal roller pinion rack is deduced by using its tooth profile formation principle. The motion simulation of the trochoidal roller pinion rack transmission is carried out to verify the correctness of the theoretical derivation of the equation of the line of action, and the influence of the basic parameters on the line of action is summarized. The meshing stiffness of the trochoidal roller pinion rack is calculated based on the energy method used for gear meshing stiffness, and the meshing stiffness is defined considering the time-varying characteristics of its pressure angle, and the influence of each basic parameter on the meshing stiffness is studied. The results shows that the meshing stiffness increases first and then decreases in the double tooth meshing area, while the meshing stiffness gradually decreases in the single tooth meshing area. The basic parameters including number of roller pins, the module, the rack tooth profile offset coefficient, the diameter coefficient of roller pin, and the addendum coefficient of rack have different effects on the line of action and meshing stiffness. The research conclusion can provide reference for the parameter design of the trochoidal roller pinion rack, and provide the meshing stiffness calculation method for the dynamic analysis of the transmission.

Funder

the National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3