Abstract
This study explored the use of coir fibers extracted from coconut husks, an agro-waste material that constitutes sanitation and environmental pollution problems, as a reinforcing element in the production of metakaolin-based geopolymer composites with improved properties. A series of sample formulations were produced with varying coir fiber content (0.5, 1.0, 1.5, and 2.0 percent weight of metakaolin powder). The investigation was conducted using a 10 M NaOH alkaline solution with a 0.24 NaOH:Na2SiO3 mass ratio. Samples were cured for 28 days and tested for bulk density, ultrasonic pulse velocity (UPV), and compressive and flexural strength. Microstructural examinations such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were also performed on samples. Compressive strength values up to 21.25 N/mm2 at 0.5% fiber content and flexural strength values up to 10.39 N/mm2 at 1% fiber content were achieved in this study. The results obtained showed a decreasing bulk density of geopolymer samples (2113 kg/m3 to 2045 kg/m3) with increasing coir fiber content. The geopolymer samples had UPV values varying from 2315 m/s to 2717 m/s. Coir fiber with 0.5–1.0% fiber content can be incorporated into metakaolin-based geopolymers to produce eco-friendly composite materials with improved mechanical properties for sustainable development.
Funder
Pan African Materials Institute (PAMI), Abuja
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献