Active Noise Control for Aircraft Cabin Seats

Author:

Dimino IgnazioORCID,Colangeli Claudio,Cuenca JacquesORCID,Vitiello Pasquale,Barbarino Mattia

Abstract

In turboprop aircraft, the low-frequency noise field created by the propellers is the major contributor to the interior vibro-acoustic field, which determines a passenger’s discomfort. This paper deals with the experimental assessment of an active noise control (ANC) system for cabin seat headrests using two loudspeakers placed on both sides of the passenger’s head to create a local zone of quiet around the passenger’s ears. To deal with time-varying disturbances, the developed ANC system utilized a two-input-two-output filtered-X LMS algorithm developed in MATLAB/Simulink and implemented on a DSPACE control board to drive the secondary speakers and cancel the unwanted low-frequency noise components. The performance of the active headrest was investigated through real-time experimentation involving sensors, actuators, and electronic devices. The test results showed that up to approximatively 20 dB of sound attenuation could be realized in the passenger’s ears over a narrowband sound field replicated under laboratory conditions. Such achievements represent an excellent starting point toward practical applications in the design of more comfortable and acoustically efficient aircraft cabin seats.

Funder

Clean Sky 2 Joint Undertaking

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Active Control of Sound;Nelson,1993

2. Active Sound and Vibration Control—Theory and Applications;Tokhi,2002

3. Active Control of Aircraft Cabin Noise;Dimino,2015

4. Vibro-acoustic design of an aircraft-type active window. Part 1: Dynamic modelling and experimental validation;Dimino;J. Theor. Appl. Mech.,2012

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3