Machine Learning-Based Models for Detection of Biomarkers of Autoimmune Diseases by Fragmentation and Analysis of miRNA Sequences

Author:

Ali Nehal M.ORCID,Shaheen MohamedORCID,Mabrouk Mai S.,Aborizka Mohamed

Abstract

Thanks to high-throughput data technology, microRNA analysis studies have evolved in early disease detection. This work introduces two complete models to detect the biomarkers of two autoimmune diseases, multiple sclerosis and rheumatoid arthritis, via miRNA analysis. Based on work the authors published previously, both introduced models involve complete pipelines of text mining methods, integrated with traditional machine learning methods, and LSTM deep learning. This work also studies the fragmentation of miRNA sequences to reduce the needed processing time and computational power. Moreover, this work studies the impact of obtaining two different library preparation kits (NEBNEXT and NEXTFLEX) on the detection accuracy for rheumatoid arthritis. Additional experiments are applied to the proposed models based on three different transcriptomic datasets. The results denote that the transcriptomic fragmentation model reported a biomarker detection accuracy of 96.45% on a sequence fragment size of 0.2, indicating a significant reduction in execution power while retaining biomarker detection accuracy. On the other hand, the LSTM model obtained a promising detection accuracy of 72%, implying savings in feature engineering processing. Additionally, the fragmentation model and the LSTM model reported 22.4% and 87.5% less execution time than work in the literature, respectively, denoting a considerable execution power reduction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3