A Comparison of PCA-LDA and PLS-DA Techniques for Classification of Vibrational Spectra

Author:

Lasalvia MariaORCID,Capozzi VitoORCID,Perna GiuseppeORCID

Abstract

Vibrational spectroscopies provide information about the biochemical and structural environment of molecular functional groups inside samples. Over the past few decades, Raman and infrared-absorption-based techniques have been extensively used to investigate biological materials under different pathological conditions. Interesting results have been obtained, so these techniques have been proposed for use in a clinical setting for diagnostic purposes, as complementary tools to conventional cytological and histological techniques. In most cases, the differences between vibrational spectra measured for healthy and diseased samples are small, even if these small differences could contain useful information to be used in the diagnostic field. Therefore, the interpretation of the results requires the use of analysis techniques able to highlight the minimal spectral variations that characterize a dataset of measurements acquired on healthy samples from a dataset of measurements relating to samples in which a pathology occurs. Multivariate analysis techniques, which can handle large datasets and explore spectral information simultaneously, are suitable for this purpose. In the present study, two multivariate statistical techniques, principal component analysis-linear discriminate analysis (PCA-LDA) and partial least square-discriminant analysis (PLS-DA) were used to analyse three different datasets of vibrational spectra, each one including spectra of two different classes: (i) a simulated dataset comprising control-like and exposed-like spectra, (ii) a dataset of Raman spectra measured for control and proton beam-exposed MCF10A breast cells and (iii) a dataset of FTIR spectra measured for malignant non-metastatic MCF7 and metastatic MDA-MB-231 breast cancer cells. Both PCA-LDA and PLS-DA techniques were first used to build a discrimination model by using calibration sets of spectra extracted from the three datasets. Then, the classification performance was established by using test sets of unknown spectra. The achieved results point out that the built classification models were able to distinguish the different spectra types with accuracy between 93% and 100%, sensitivity between 86% and 100% and specificity between 90% and 100%. The present study confirms that vibrational spectroscopy combined with multivariate analysis techniques has considerable potential for establishing reliable diagnostic models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3