KFSENet: A Key Frame-Based Skeleton Feature Estimation and Action Recognition Network for Improved Robot Vision with Face and Emotion Recognition

Author:

Le Dinh-Son,Phan Hai-HongORCID,Hung Ha HuyORCID,Tran Van-An,Nguyen The-Hung,Nguyen Dinh-QuanORCID

Abstract

In this paper, we propose an integrated approach to robot vision: a key frame-based skeleton feature estimation and action recognition network (KFSENet) that incorporates action recognition with face and emotion recognition to enable social robots to engage in more personal interactions. Instead of extracting the human skeleton features from the entire video, we propose a key frame-based approach for their extraction using pose estimation models. We select the key frames using the gradient of a proposed total motion metric that is computed using dense optical flow. We use the extracted human skeleton features from the selected key frames to train a deep neural network (i.e., the double-feature double-motion network (DDNet)) for action recognition. The proposed KFSENet utilizes a simpler model to learn and differentiate between the different action classes, is computationally simpler and yields better action recognition performance when compared with existing methods. The use of key frames allows the proposed method to eliminate unnecessary and redundant information, which improves its classification accuracy and decreases its computational cost. The proposed method is tested on both publicly available standard benchmark datasets and self-collected datasets. The performance of the proposed method is compared to existing state-of-the-art methods. Our results indicate that the proposed method yields better performance compared with existing methods. Moreover, our proposed framework integrates face and emotion recognition to enable social robots to engage in more personal interaction with humans.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Reinforcement Learning Approaches in Social Robotics

2. A review of recent research in social robotics

3. Preparing for a robot future? Social professions, social robotics and the challenges ahead;Share;Ir. J. Appl. Soc. Stud.,2018

4. A Survey of Vision-Based Human Action Evaluation Methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3