Nondestructive Surface Crack Detection of Laser-Repaired Components by Laser Scanning Thermography

Author:

Geng ChuanqingORCID,Shi Wenxiong,Liu Zhanwei,Xie Huimin,He Wei

Abstract

As a revolutionary new technique, laser-engineered net shaping (LENS) is a layer additive manufacturing process that enables accurate, rapid and automatic repair of industrial component damage. In the laser repair (LR) process or in service, surface cracks can appear, which have a detrimental effect on the repair quality and the mechanical performance; therefore, the surface crack detection of repaired components has attracted much attention. Laser spot thermography is an important nondestructive testing method with the advantages of non-contact, full-field and high precision, which shows great potential in the crack detection of repaired components. The selection of thermographic process parameters and the optimization of thermal image processing algorithms are key to the success of the nondestructive detection. In this paper, the influence of material properties and thermographic process parameters on the surface temperature gradient is studied based on the simulation of laser spot thermal excitation, and the selection windows of thermographic process parameters for iron-based and nickel-based alloys are obtained, which is applied to the surface crack detection of repaired components. To improve the computational efficiency of thermal images, the Prewitt edge detection algorithm is used in the thermal image processing, which realized fast extraction of cracks with a high signal-to-noise ratio (SNR), and the detection sensitivity of crack width can reach 10 μm. To further study the influence of surface roughness on the thermographic detection, repair layers with and without polishing process are characterized, which show that the Prewitt edge detection algorithm is well applicable to crack detection on surfaces with different roughness level.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3