Selection Methodology of Composite Material for Retractable Main Landing Gear Strut of a Lightweight Aircraft

Author:

Ahmad Muhammad AyazORCID,Rafiq Hamza,Shah Syed Irtiza Ali,Khan Sabih AhmadORCID,Rizvi Syed Tauqeer ul Islam,Shams Taimur AliORCID

Abstract

The design and development of high-strength and low-weight composite landing gear struts is still a challenge in today’s world. In this study, a selection methodology for fiber-reinforced composite material for retractable main landing gear struts for specified lightweight aircraft up to 1600 kg mass is proposed. Four different fiber-reinforced composite materials, two each from the glass-fiber and carbon-fiber families, including E-glass fiber/epoxy, S-glass fiber/epoxy, T300 carbon fiber/epoxy, and AS carbon fiber/epoxy, were considered for analysis. For the design and analysis of a main landing gear strut, maximum landing loads for one point and two point landing conditions were calculated using FAA FAR 23 airworthiness requirements. Materials were categorized based on their strength-to-weight ratio and the Tsai-Wu failure criterion. Landing gear struts meeting the Tsai-Wu failure criterion, and having a maximum strength-to-weight ratio, were then modeled for performance under a collision detection test. This research concludes that T300 carbon fibre/epoxy is a recommended material for the manufacture of landing gear struts for specified lightweight aircraft.

Funder

Higher Education Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Composite Materials: Science and Applications;Chung,2010

2. Analysis and Performance of Fiber Composites;Agarwal,1990

3. Topology Optimization for Maximizing the Fracture Resistance of Periodic Quasi-Brittle Composites Structures

4. Topology Optimization Design of Heterogeneous Materials and Structures;Da,2019

5. Fracture resistance design through biomimicry and topology optimization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3